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Abstract In this article we study self-gravitating static solutions of the Einstein-Scalar
Field system in arbitrary dimensions. We discuss the existence of geodesically com-
plete solutions depending on the form of the scalar field potential V (φ), and provide
full global geometric estimates when the solutions exist. The most complete results
are obtained for the physically important Klein–Gordon field and are summarised as
follows. When V (φ) = m2|φ|2, it is proved that geodesically complete solutions have
Ricci-flat spatial metric, have constant lapse and are vacuum, (that is φ is constant
and equal to zero if m ̸= 0). In particular, when the spatial dimension is three, the
only such solutions are either Minkowski or a quotient thereof (no nontrivial solutions
exist). When V (φ) = m2|φ|2 + 2", that is, when a vacuum energy or a cosmological
constant is included, it is proved that no geodesically complete solution exists when
" > 0, whereas when " < 0 it is proved that no non-vacuum geodesically complete
solution exists unless m2 < −2"/(n − 1), (n is the spatial dimension) and the spatial
manifold is non-compact. The proofs are based on novel techniques in comparison
geometry á la Bakry-Émery that have their own interest.
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1 Introduction

A classical result in General Relativity due to Lichnerowicz [8] (with previous work
by Einstein and Einstein-Pauli, see [6]) asserts that there are no nontrivial asymptoti-
cally flat stationary solitons1 of the vacuum Einstein equations. That is, the only such
solution is the Minkowski spacetime. This result is generalisable to include matter like
the electromagnetic field but not to any type of non-exotic matter. Indeed Bartnik and
McKennon [3], (and rigorously Smoller–Wasserman–Yau–McLeod [10]) displayed
a remarkable soliton for the Einstein–Yang Mills system with gauge group SU(2),
despite of the fact that there are no nontrivial solitons for the SU(2) Yang-Mills theory
alone. In spite of this, the existence (or not) of self gravitating equilibrium configu-
rations without singularities is so important in physics that any pursuit of a general
theory is itself a valuable endeavour. In this article we will explore this topic from a
general geometric point of view and for the Einstein-Scalar Field system. We elaborate
on that below.

A fundamental geometric extension of Lichnerowicz’s theorem in vacuum due
to Anderson [1] asserts that the only geodesically complete solution of the strictly
stationary Einstein equations is Minkowski or a quotient thereof. Thus, for strictly
stationary solutions, no material sources implies no gravity and this is true in any
possible geodesically complete scenario. Anderson’s theorem uses fundamentally a
well known conformal transformation that presents the stationary equations as a har-
monic map into hyperbolic two-space (see [11]). Thinking of possible extensions, the
drawback of this presentation is that it is seldom possible when material fields are
considered. In addition, Anderson’s proof relies heavily on special properties of the
Cheeger–Gromov theory of convergence and collapse of Riemannian manifolds in
dimension three that do not hold in higher dimensions.

Recently however, Cortier and Minerve [5] were able to reprove Anderson’s result
(under extra assumptions) using just standard techniques in comparison geometry.
Yet their result relies again on the harmonic-map representation earlier mentioned.
On the other hand, Case [4] also motivated by Anderson’s theorem, was able to
apply techniques in comparison geometry á la Bakry-Émery to prove closely related
rigidity results for quasi-Einstein metrics bearing much in common with the static
Einstein equations and with certain types of Einstein-Scalar Field equations. Case’s
technique is considerably flexible and generalisable to higher dimensions. (We note
also that there is recent interesting work by Galloway–Woolgar [7] and Woolgar–
Wylie [13] on the so called Bakry-Émery spacetimes familiar in some way to Case’s
paper).

Motivated by these developments, in this article we import techniques in comparison
geometry á la Bakry-Émery to study in depth the existence of geodesically complete
static solutions of the Einstein-Scalar Field equations for different types of the scalar
field potential V (φ). We do not make any dimensional, global, or even any asymptotic
assumption like asymptotic flatness, and in this sense several of the conclusions of
this paper are the most general they can be.

1 By soliton we understand a ‘particlelike’ regular and localised solution.
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As a main application, with a marked physical interest, we discuss thoroughly the
ubiquitous Klein–Gordon field in the presence or not of a cosmological constant. Let
us describe the conclusions in full detail. For the setup we refer the reader to the next
section. We divide the discussion according to the type of potential V (φ). When V (φ)

is just the standard Klein–Gordon potential, i.e. V (φ) = m2|φ|2, it is proved that
geodesically complete solutions have Ricci-flat spatial metric, have constant lapse N ,
and are vacuum, that is φ = φ0 with φ0 = 0 if m ̸= 0, (Theorem 4.1). Therefore,
if the spatial dimension is three, the only such solutions are either Minkowski or a
quotient thereof. When V (φ) = m2|φ|2 + 2", that is, including a vacuum energy
or a cosmological constant, we prove that no geodesically complete solution exists
when " > 0, whereas when " < 0 it is proved that no non-vacuum geodesically
complete solution exists unless m2 < −2"/(n − 1) and unless the manifold is non-
compact, (Theorems 4.2 and 4.3). Moreover, in this case, we provide the pointwise
estimate |∇φ|2+m2|φ|2 ≤ −68" for the energy density (Theorem 4.3), the pointwise
estimate |∇N |/N ≤ 64

√−" for the gradient of the lapse (Theorem 4.4), and, when
the spatial dimension is three, we prove a general pointwise bound on the curvature
in terms of |"| (Theorem 4.5). In this last case, vacuum solutions (i.e. φ = 0) other
than AdS were shown to exist by Anderson in [2] though it is not know if non-vacuum
solutions exist. The pointwise estimates that we obtain seem to be new even in the
vacuum case. These estimates could be useful in theories that study spaces asymptotic
to AdS, with or without a scalar field.

In Sect. 4.3, we briefly enumerate a series of conclusions (mostly no-go theorems)
that can be made for certain examples of the Einstein-Real Scalar Field system, such
as those using the sine-Gordon or Higgs potentials. The author expects similar appli-
cations to other potentials.

To simplify the whole presentation we opted to base our results on Lemma 3.2
which we adapted from [4]. All the main results follow from it. It must be said that
most of this article (as well as of [4]) rests on the powerful framework of comparison
geometry á la Bakry-Émery as developed for instance in [12]. We won’t be elaborating
on this theory, rather we refer the reader to [12] for a comprehensive account. The
following notation, that we will use below, is taken from [12],

Ric1
f : = Ric + ∇∇ f − ∇ f ∇ f, (1.1)

# f ψ = #ψ − ⟨∇ f,∇ψ⟩ (1.2)

We elaborate now on the method of proof. The applications, which are elaborated
in Sect. 4, are deduced from Lemma 3.2 in conjunction with a simple observation that
is worth to mention here. The key observation is that, using the static equations and
the Bochner type Eq. (4.1), one can obtain expressions for the f -Laplacian # f , (with
f = − ln N ), of ψ = |∇φ|2 and of ψ = |∇ ln N |2 of the form

# f ψ ≥ bψ + cψ2, (1.3)

with b ≤ 0 and c > 0. The Lemma 3.2 is then used to provide fundamental pointwise
estimates for a ψ satisfying (1.3) whenever the f -Ricci tensor Ric1

f is bounded below.
As it happens that in the main applications Ric f is bounded below, this provides the
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fundamental gradient estimates for φ and ln N from which all the conclusions of this
paper follow.

The organisation of the article is as follows. In Sect. 2 we recall the main static
equations of the Einstein-Scalar Field system, together with the notation and the ter-
minology. Section 2.1 explains the type of manifolds used during the paper. Section3
is the technical section where the main Lemma 3.2 is stated and proved. The applica-
tions are discussed in Sect. 4 which is divided in three subsections: Sect. 4.1 discusses
the Klein–Gordon case, Subsection 4.2 discusses the Klein–Gordon case in the pres-
ence of a cosmological constant and Sect. 4.3 elaborates on applications to real-Scalar
Fields.

2 The static equations

We give below the static equations of the Einstein-Complex Scalar Field system in
spacetime-dimension n + 1, (n ≥ 2). We use the following notation: (1) φ is the
complex scalar field and φ̄ the complex conjugate (2) φR is the real part of φ and φI
the imaginary part (3) |φ| is the norm of φ and |∇φ| is the norm of ∇φ (i.e. |∇φ|2 =
⟨∇φ,∇φ̄⟩). The potentials that we will consider are of the form V (φR,φI ). We will
use the shorthand V (φ). The spacetime metric is assumed to split as g = −N 2dt2+g,
and the metric g, as well as the lapse N > 0, live in a n-dimensional manifold %. The
relevant data is thus (%; N , g;φ).

The static Einstein-(Complex) Scalar Field equations are,

Ric + ∇∇ f − ∇ f ∇ f = ∇φ ◦ ∇φ̄ + V (φ)

n − 1
g, (2.1)

# f − ⟨∇ f,∇ f ⟩ = V (φ)

n − 1
, (2.2)

#φ − ⟨∇ f,∇φ⟩ = ∂V (φ)

2
, (2.3)

where f = − ln N , ∇φ ◦ ∇φ̄ = (∇φ∇φ̄ + ∇φ̄∇φ)/2 = ∇φR∇φR + ∇φI∇φI , and
∂V is

∂V = ∂V
∂φR

+ i
∂V
∂φI

(2.4)

These equations imply, in turn, the following expression for the scalar curvature R (or
energy density),

R = |∇φ|2 + V (φ). (2.5)

The system (2.1)–(2.2) arises as the static Euler–Langrange equations of the n+1-
dimensional (spacetime) action2

S(g,φ) =
∫ [

Rg − ∇µφ∇µφ̄ − V (φ)

]
dvg (2.6)

2 Inserting positive constants in front of R, or ∇µφ∇µφ does not change the analysis of this article.
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or, also, as the Euler–Lagrange equations of the n-dimensional (spatial) action

S( f, g,φ) =
∫ [

R − |∇φ|2 − V (φ)

]
e− f dv (2.7)

2.1 Manifolds

Without any explicit specification, a ‘manifold %’ is allowed to have boundary or to
be boundaryless, and to be compact or non-compact. Whatever the case, (%; g) is
assumed metrically complete with respect to the standard metric

d(p, q) = inf{L(γpq) : γpq ∈ Cpq} (2.8)

where Cpq is the set of smooth curves joining p to q. Hence, if % is boundaryless then
(%; g) is geodesically complete by Hopf-Rinow. On the other hand if % has boundary
then (%; g) is geodesically incomplete as geodesics can terminate at the boundary.
Henceforth, when we say ‘(%; g) is geodesically complete’, we are saying implicitly
that % is boundaryless, no matter if % is compact or not.

These conventions have to be kept in mind to prevent confusion. For example, the
de-Sitter metric

g =
(

1
1 − "r2/3

)
dr2 + r2d(2

n−2, N =
√

1 − "r2

3
(2.9)

is a solution of the static Einstein equations with a positive cosmological constant,
although we will show later that there is no such solution which is geodesically
complete. The point here is that the de-Sitter solution is defined on a manifold with
boundary (the cosmological horizon), hence geodesically incomplete.

As was detailed earlier, several of the main conclusions of this article are about
geodesically complete static spacetimes. Namely, geodesics of any spacetime character
have infinite parametric time. If, as we are assuming, such spacetime splits as R × %

with g = −N 2dt2 + g then the slice (%; g) is also geodesically complete because %

is totally geodesic inside M. Hence we do not loose generality, (rather we gain), if the
statements later refer only to the geodesic completeness of the (%; g). This is more
convenient as the techniques that we use for the different proofs deal only with (%; g)
and not with (M; g).

A non-existence result of geodesically complete solutions is important because it
says that any inextensible solution (necessarily geodesically incomplete) has always,
roughly speaking, either a horizon or a singularity.

3 The technical lemmas

In this section we state and prove Lemma 3.2 which is the main technical lemma to
be used in applications. We start recalling (without proof) Theorem A.1 from [12].
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To get exactly the expression (3.4) from the statement of Theorem A.1 simple replace
mn+1

H for its equivalent in Eq. (3.8) of [12]. Lemma 3.2 is discussed afterwards.
In this Theorem and also below dp is equal to either

dp = d(p, ∂%), (3.1)

if ∂% ̸= ∅ or
dp = sup{d(p, x) : x ∈ %} (3.2)

if ∂% = ∅. In particular if % is non-compact and boundaryless then dp = ∞,3

Theorem 3.1 ([12]) Let (%; g) be an n-dimensional Riemannian manifold. Suppose
that

Ric + ∇∇ f − ∇ f ∇ f ≥ (nH)g (3.3)

for some function f and real number H. Let p be a point in % \ ∂% and let r be the
distance function to p, i.e. r(x) = d(x, p). Then, at any x such that r(x) < dp we
have

# f r ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n
√
H

tan(
√
Hr)

if H > 0,
n
r if H = 0,

n
√
|H |

tanh(
√
|H |r) if H < 0.

(3.4)

in the barrier sense.4

Of course we could have ∂% = ∅ in which case % \ ∂% = %. As seen in [12], this
Theorem implies the following generalised Myers’s estimate: if H > 0, then for any
point p we have dp ≤ π/

√
H . In particular if % is non-compact then ∂% ̸= ∅. We

will use this property later.
The following is the main technical Lemma to be used and that is adapted from an

estimate due to Case [4].

Lemma 3.2 Let (%; g), f , H and p be as in Theorem3.1. Letψ be a real non-negative
function such that

# f ψ ≥ bψ + cψ2, (3.5)

with b ≤ 0 and c > 0. Then,

ψ(p) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
c

[
4n + 24

d2
p

− b
]

if H ≥ 0,

1
c

[
4n

√|H |
dp tanh(

√
|H |dp)

+ 24

d2
p

− b
]

if H < 0
(3.6)

3 A technical remark is here necessary. For p ∈ % \ ∂% and rp < dp the metric ball B(p, rp) := {q ∈ % :
d(p, q) < r}has the following property: for everyq in B(p, rp), there is at least a length minimising segment
joining p to q and entirely inside B(p, rp). Thus, inside B(p, rp), the distance function r(q) = d(p, q)
can be used as any geodesic distance function. These properties may not hold if rp > dp and this explain
why we need the condition rp < dp in Theorem 3.1.
4 This is an important property as it allows us to make analysis as if r were a smooth function. The reader
can consult this notion in [9].
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Proof For any function χ the following general formula holds

# f (χψ) = ψ# f χ + 2⟨∇χ ,∇ψ⟩ + χ# f ψ (3.7)

Thus, if χ ≥ 0 and if χψ has a local maximum at q, then we have

0 ≥
[
# f (χψ)

]∣∣∣∣
q

(3.8)

≥
[
ψ# f χ − 2

|∇χ |2
χ

ψ + bχψ + cχψ2
]∣∣∣∣

q
(3.9)

where to obtain the second inequality we used (3.5). To simplify notation let r =
r(x) = d(x, p). Let rp be a positive number less than dp. On the ball B(p, rp) let the
function χ(x) be χ(x) = (r2

p − r2(x))2. Let q be a point in the closure of B(p, rp)
where the maximum of χψ is achieved. As (χψ)(q) ≥ (χψ)(p) = r4

pψ(p) we
deduce that if ψ(q) = 0 then ψ(p) = 0. In this case (3.6) follows. So let us assume
that ψ(q) > 0 and hence that q ∈ B(p, rp). By (3.8) we have

cr4
pψ(p) ≤ c(χψ)(q) ≤

[
2
|∇χ |2

χ
− # f χ − bχ

]∣∣∣∣
q

(3.10)

≤
[

4(r2
p − r2)r# f r + 4r2

p + 20r2 − br4
p

]∣∣∣∣
q

(3.11)

But if Ricα
f ≥ nHg then # f r can be estimated from (3.4). Use this estimation

in (3.11), divide by cr4
p, and take the limit rp → dp to obtain (3.6) by simple

bounds. ⊓0
Corollary 3.3 Assume the hypothesis of Lemma 3.2 and that (%; g) is non-compact
and geodesically complete. Then,

ψ(p) ≤ −b
c

(3.12)

at any p ∈ %, regardless of the sign of H.

Proof If (%; g) is non-compact and geodesically complete then dp = ∞ and the
result follows from (3.6). ⊓0

4 Applications

4.1 Klein–Gordon

In this section we study the Klein–Gordon potential V (|φ|) = m2|φ|2. The mass is
allowed to be zero in which case V = 0. The theorem that follows is perhaps the
simplest application of the estimates of the previous section.
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Theorem 4.1 Let (%; N , g;φ) be a geodesically complete solution of the n-
dimensional static Einstein–KleinGordon equations. Then, Ric = 0, N = N0 (const.)
and φ = φ0 (const.), with φ0 = 0 if m ̸= 0. In particular if n = 3 then (%; g) is
covered by the Euclidean three-space.

The main Bochner type formula that we are going to use is

1
2
# f |∇ξ |2 =|∇∇ξ |2 + ⟨∇ξ,∇(# f ξ)⟩ (4.1)

+ Ric1
f (∇ξ,∇ξ)+ |⟨∇ξ,∇ f ⟩|2 (4.2)

which is valid for any real function ξ , [12].

Proof During the proof we make f = − ln N . To start note that if % is compact and
m ̸= 0 then φ = 0 by integrating (2.2) against N = e− f . But if φ = 0 then f is
constant by integrating (2.2) against N 2 = e−2 f . Thus Ric = 0 by (2.2) as claimed.
Identical conclusion is reached if m = 0 by integrating (2.2) against N 2 = e−2 f and
(2.3) against φ.

Assume then from now on that % is non-compact. Recall that we use the notation
φ = φR + iφI . From (2.3) we obtain

# f χ = m2χ (4.3)

for χ equal to either φR or φI . Use then these two equations to evaluate (4.1) with
ξ = φR and with χ = φI . Add up the results and get (after discarding a few positive
terms)

1
2
# f (|∇φR |2 + |∇φI |2) ≥ |∇φR |4 + |∇φI |4 (4.4)

Use now |∇φ|2 = |∇φR |2 + |∇φI |2 and the inequality (x4 + y4) ≥ (x2 + y2)2/2 to
arrive at

# f |∇φ|2 ≥ |∇φ|4 (4.5)

It follows then from Corollary 3.3 that ∇φ = 0. Hence φ = φ0, and φ0 = 0 if m ̸= 0
from (2.3).

We prove now that the lapse must be constant. From what was proved before we
have Ric1

f = 0 and # f f = 0. Use then (4.1) with ξ = f to get

1
2
# f |∇ f |2 ≥ |∇ f |4 (4.6)

Thus, ∇ f = 0 from Corollary 3.3 and hence N = N0.
If f = f0 then Ric = 0 from Ric1

f = 0. ⊓0

4.2 !-Klein–Gordon

In this section we investigate geodesically complete solutions of the static Einstein-
Scalar Field equations with potentials of the form V (φ) = m2|φ|2 + 2".
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The case " = 0 was the one considered in the previous section, therefore we
consider below only the cases " > 0 and " < 0.

" > 0: In this case it is easy to see that there are no geodesically complete solutions
at all. Indeed, if % is compact a contradiction is obtained by integrating (2.2) against
N = e− f . On the other hand if % is non-compact, then % must have boundary because
Ric1

f ≥ (2"/(n − 1))g, as we already commented after the statement of Theorem
3.1. This thus contradicts the assumption that (%; g) is geodesically complete.

" < 0: As pointed out in the introduction, there are geodesically complete solutions
in this case, therefore the best one can do is to understand the local and global geometry.
Our first results shows that geodesically complete solutions with % compact do not
exist. Our second result uses this information to provide complete estimates on the
scalar field φ.

Theorem 4.2 Let (%; N , g;φ) be a geodesically complete solution of the static
Einstein-Scalar Field equations with potential V (φ) = m2|φ|2 + 2", where " < 0.
Then % is non-compact.

Proof During the proof we use f = − ln N . Assume that % is compact. Then observe
that as (2.3) is equivalent to

div(N∇φ) = m2Nφ (4.7)

we can multiply this equation by φ̄ and can integrate over % to obtain

0 =
∫

%
N (|∇φ|2 + m2|φ|2) dv (4.8)

This implies φ = φ0 with φ0 = 0 if m ̸= 0. Using this information then note that (2.2)
is equivalent to #N = (−2"/(n − 1))N . Integrating this over % we deduce " = 0,
and thus a contradiction. ⊓0
Theorem 4.3 Let (%; g, N ;φ) be a geodesically complete solution of the static
Einstein-Scalar Field equations with potential V (φ) = m2|φ|2 + 2", where " < 0.
Then the following holds:

(i) if m2 ≥ −2"/(n − 1) then φ is identically zero, and,
(ii) if m2 < −2"/(n − 1) then,

|∇φ|2 ≤ −4"

(n − 1)
, m2|φ|2 ≤ −64". (4.9)

In particular R = |∇φ|2 + m2|φ|2 + 2" ≤ −66", by a coarse estimation.

Proof During the proof we use f = − ln N . Use (4.1) with ξ = φR and with χ = φI
and add up the results to obtain (after discarding a few positive terms)

#|∇φ|2 ≥ 2(m2 + 2"

n − 1
)|∇φ|2 + |∇φ|4 (4.10)

Hence, if m2 ≥ −2"/(n − 1) then φ is constant by Corollary 3.3. But if φ is constant
and m2 > 0 then φ must be indeed zero by equation (2.3).
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Let us assume then that m2 < −2"/(n − 1). By Corollary 3.3 we have

|∇φ|2 ≤ −2(
2"

(n − 1)
+ m2) ≤ −4"

(n − 1)
(4.11)

which shows the first estimate of (4.9). Using this estimate together with m2 <

−2"/(n − 1) we deduce

m|∇φ| ≤ −
√

8"

(n − 1)
(4.12)

The convenience of this estimate is the following. If two points p0 and p are separated
by a distance L then

m|φ(p0)| − m|φ(p)| ≤ |mφ(p0) − mφ(p)| (4.13)

=
∣∣
∫

γ
m∇γ ′φ ds

∣∣ (4.14)

≤ −
√

8"L
(n − 1)

(4.15)

where γ (s) is a length minimising geodesic segment joining p0 to p. Hence, if at a
point p0 we have

m|φ(p0)| ≥ 8
√

−" (4.16)

then
m|φ(p)| ≥ 5

√
−" (4.17)

at every point p of the ball B(p0, (n − 1)/
√−") because, using (4.13), we would

have m|φ(p)| ≥ 8
√−" − 2

√
2
√−" ≥ 5

√−". Assume then that (4.17) holds on
B(p0, (n − 1)/

√−"). Using (4.17) and (2.1) we deduce that all over that ball we
must have,

Ric1
f ≥

(−23"

n − 1

)
g =: (nH)g (4.18)

where the right hand side is the definition of H . Now, by Theorem 4.2, % is non-
compact. This implies that there are points in the closure of the ball B(p0, (n −
1)/

√−") at a distance exactly of (n − 1)/
√−" from p0. But as explained earlier

(see discussion afer Theorem 3.1) the radius of the ball, namely (n−1)/
√−", should

be less or equal than π/
√
H , in other words we should have,

n − 1√−"
≤ π

√
n(n − 1)√

23
√−"

(4.19)

This equation doesn’t hold for any n ≥ 2. Thus, no matter the point p0, (4.16) and
hence (4.17), cannot hold. Therefore we have

m2|φ|2 ≤ −64" (4.20)

which is the second estimate of (4.9). ⊓0
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So far, Theorem 4.3 provides complete estimates for the scalar field φ. We occupy
now ourselves with the Lorentzian geometry, namely with N and g. As we show below,
gradient estimates for ln N can be provided in any dimension but pointwise curvature
estimate only in spatial dimension three. We start proving estimates for N .

Theorem 4.4 Let (%; g, N ;φ) be a geodesically complete solution of the static
Einstein-Scalar Field equations with potential V (φ) = m2|φ|2 + 2", where " < 0.
Then, the following holds,

(i) if m2 ≥ −2"/(n − 1), then

|∇N |
N

≤
√

−2"

n − 1
(4.21)

and,
(ii) if m2 < −2"/(n − 1) then

|∇N |
N

≤ 64
√

−" (4.22)

Proof During the proof we use f = − ln N . Use (4.1) with ξ = f , discard a pair of
terms and obtain

1
2
# f |∇ f |2 ≥ ⟨∇ f,

m2∇(|φ|2)
n − 1

⟩ + 2"

n − 1
|∇ f |2 + |∇ f |4 (4.23)

If m2 ≥ −2"/(n − 1) then ∇φ = 0 and the first term in the right hand side of the
previous equation is zero. We can use Corollary 3.3 to obtain |∇ f |2 ≤ −2"/(n − 1),
which is (4.21).

Assume now that m2 < −2"/(n − 1). We need to bound the first term in the right
hand side of the previous equations. We do this as follows. First write

|⟨∇ f,
m2∇(|φ|2)

n − 1
⟩| (4.24)

= |2m2(φR⟨∇ f,∇φR⟩ + φI ⟨∇ f,∇φI ⟩| (4.25)

≤ 2m(m|φR||∇φR | + m|φI ||∇φI |)|∇ f | (4.26)

Use now Theorem (4.3) to bound (4.26) as

2m(m|φR||∇φR | + m|φI ||∇φI |)|∇ f | ≤ 128
n − 1

(−")3/2|∇ f | (4.27)

Thus, 〈
∇ f,

m2∇(|φ|2)
n − 1

〉
≥ − 128

n − 1
(−")3/2|∇ f | (4.28)
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Hence

1
2
# f |∇ f |2 ≥ − 128

n − 1
(−")3/2|∇ f | + 2"

n − 1
|∇ f |2 + |∇ f |4 (4.29)

Making ψ = |∇ f |2 we can write

# f ψ ≥ a
√

ψ + bψ + cψ2 (4.30)

where a = −256(−")3/2/(n − 1), b = 4"/(n − 1) and c = 2. This equation is
not the same as (3.5) and Corollary 3.3 cannot be directly used. However a simple
modification of the arguments of Lemma 3.2 shows that, if (4.30) holds, then

ψ(p) ≤ max
{(

a
b

)2

,−2b
c

}
(4.31)

Using this with the values of a, b and c given before we obtain (4.22). ⊓0

The following theorem proves that, when the spatial dimension is three, the Ricci
curvature is bounded by an expression depending only on ". The proof uses some
advanced elements of Riemannian geometry.

Theorem 4.5 Let (%; g, N ;φ) be a geodesically complete solution of the static
Einstein-Scalar Field equations with potential V (φ) = m2|φ|2 + 2", where " < 0
and in spacetime dimension four (i.e. n = 3). Then,

|Ric| ≤ R(|"|) (4.32)

for some non-negative function R.

Proof In Theorems 4.3 and 4.4 we deduced pointwise bounds for |∇ f |, |∇φ| and for
m2|φ|2 depending only on ". Therefore, recalling (2.1), the estimate (4.32) would
follow granted we can prove a pointwise estimate of |∇∇ f | depending only on ". We
prove now that this is possible when n = 3.

Let p be an arbitrary point in %. Assume that N (p) = 1. (If N (p) ̸= 1 then work
with the scaled lapse N/N (p). Observe that the system (2.1)–(2.3) is invariant under
scalings of the lapse. Below we use therefore f = − ln N and we assume N (p) = 1).

To start note that the estimates of Theorem 4.4 imply5

| f |(q) ≤ K0(") (4.33)

for every q in Bg(p, 1) and where K0(") = 64
√−". Hence we can write

K1(")−1 ≤ N (q) ≤ K1("), (4.34)

5 Just integrate ∇ ln N along radial geodesics and used then the bound |∇ ln N | ≤ 64
√−".
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for every q in Bg(p, 1) and where K1(") = eK0("). As we mentioned earlier, the
Theorems 4.3 and 4.4 give us suitable bounds for |∇ f |, |∇φ| and for m|φ|. From such
bounds one can write down the coarse estimate

|∇ f | + |∇φ| + m|φ| ≤ K2(") (4.35)

for some K2("). This is all what we will need later. We will refer to it a couple of
times.

From now on we will use the metric

ǧ := N 2g (4.36)

In terms of the variables (ǧ, N ,φ), the static equations (2.1)–(2.3) are,

ˇRic = 2∇ f ∇ f + ∇φ ◦ ∇φ̄ + V (φ)

2
e2 f ǧ, (4.37)

#̌ f = 1
2
V (φ)e f , (4.38)

#̌φ = 1
2
∂V (φ)e f , (4.39)

Now, use the bounds (4.33) and (4.35) in the formula (4.37) to deduce that | ˇRic|ǧ is
pointwise bounded in Bg(p, 1), where the bound depends only on ". Thus we have

| ˇRic|ǧ ≤ K3(") (4.40)

As we are working in dimension three, where the Riemann tensor is made out of the
Ricci tensor, the bound (4.40) implies a bound also for the Riemann tensor Řm on
Bg(p, 1) and thus we have,

|Řm|ǧ ≤ K4(") (4.41)

Now, it is direct to see from (4.34) that one can find ř1(") such that

Bǧ(p, ř1) ⊂ Bg(p, 1/2). (4.42)

Moreover, it is a standard fact in Riemannian geometry that a bound on the Riemann
tensor as (4.41) implies that, for some ř2(") < ř1("), the exponential map

exp : U (p, ř2) → Bǧ(p, ř2) (4.43)

is a smooth cover, where in this formula U (p, ř2) is the ball of radius ř2 in Tp%,
(endowed with the metric ǧ(p), namely U (p, r) := {v ∈ Tp% : |v|ǧ(p) ≤ r}).
Provide now U (p, ř2) with the pull-back metric ǧ∗ = exp∗ǧ. The injectivity radius
at p of the space (U (p, ř2), ǧ∗) is of course equal to ř2 and the Riemann tensor of
ǧ∗ is subject to the same bound (4.41) as ǧ. Therefore, the harmonic radius of the
space (U (p, ř2), ǧ∗) at p is controlled from below only by ", (see [9], Chp. 10.5.2).
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To us, the only important consequence of this is that one can make standard elliptic
analysis on (U (p, ř3), ǧ∗) for a suitable ř3(") ≤ ř2("). Hence, we can use the
bounds (4.33)–(4.35) to obtain Schauder interior elliptic estimates from the elliptic
system (4.38)–(4.39), (see [9], Chp. 10.2). Doing so we get

|∇̌∇̌ f |ǧ(p) ≤ K5(") (4.44)

Use now the expression,

∇̌i ∇̌ j f = ∇i∇ j f + 2∇ j f ∇i f − |∇ f |2ggi j (4.45)

and the bounds (4.44), (4.33) and (4.35), to deduce directly the bound

|∇∇ f |g(p) ≤ K6(") (4.46)

as wished. ⊓0

4.3 Real scalar fields

General interesting results can be obtained whenφ is real. The following theorem, gives
a simple condition for V (φ) that forces φ to be a constant. It gives nice applications
that will be illustrated very briefly below.

Theorem 4.6 Let (%; g, N ;φ) be a geodesically complete solution of the static
Einstein-Real Scalar Field system with potential V (φ). If V is bounded below and

V ′′(x)+ V (x)
n − 1

≥ 0, (4.47)

for all x, then φ = φ0, (constant), and φ0 is a critical point of V (φ).

Proof Make f = − ln N . Then, using (4.1) with ξ = φ we obtain

1
2
# f |∇φ|2 ≥

(
V ′′(φ)+ V (φ)

n − 1

)
|∇φ|2 + |∇φ|4 (4.48)

If (4.47) holds an % is compact then ∇φ = 0 by integrating (4.48) over %. On the
other hand if % is non-compact and (4.47) holds then ∇φ = 0 from Corollary 3.3.

Finally if φ = φ0 then equation (2.3) shows that φ0 is a critical point of V (φ). ⊓0
To illustrate the relevance of this Theorem let us consider a set of simple and

(more or less) natural potentials and let us enumerate, without entering into further
discussion, the strong conclusions that can be deduced in each case.

1. V (φ) = λφ2n , λ > 0, n = 1, 2, 3, . . .. In this case (4.47) is verified and therefore
any geodesically complete solution must have φ = 0.

2. V (φ) = λ cosh φ, λ > 0. In this case (4.47) is verified and therefore any geodesi-
cally complete solution must have φ = 0.
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3. V (φ) = λeφ , λ > 0. In this case (4.47) is verified but there cannot be geodesically
complete solutions at all because V has no critical points.

4. V (φ) = λ sin
√
(n − 1)φ (a type of Sine-Gordon potential). In this case the l.h.s of

(4.47) is identically zero and thus any geodesically complete solution must have
φ = (−π/2 + 2 jπ)/

√
n − 1, j ∈ Z (the other critical points make V strictly

positive). This example is interesting because it shows that strong conclusions can
be obtained even when V is not a non-negative potential.

5. V (φ) = λ(φ2 − φ2
0)

2, λ > 0, (a type of Higgs potential). In this case one can
show that if φ2

0 > 6(n − 1) then any geodesically complete solution must have
|φ| = |φ0|. To see this observe that, in this case, (4.47) is equivalent to

12(φ2 − φ2
0)+ 8φ2

0 + (φ2 − φ2
0)

2

n − 1
≥ 0 (4.49)

Making z = φ2 − φ2
0 , the previous equation is equivalent to 12z+ 8φ2

0 + z2/(n −
1) ≥ 0 for all z ≥ −φ2

0 . But if φ2
0 ≥ 6(n − 1) then the polynomial 12z + 8φ2

0 +
z2/(n − 1) is non-negative.
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